MR15-(2015-16 Batch)

Code No.: 50133

MALLA REDDY ENGINEERING COLLEGE (AUTONOMOUS)

(Affiliated to JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD) Gundlapochampally (H), Maisammaguda (V), Medchal (M), Medchal-Malkajgiri (Dist), Hyderabad

IV B.TECH I SEMESTER SUPPLEMENTARY EXAMINATIONS, NOVEMBER-2019

Subject: FOUNDATION ENGINEERING

Branch: CE

Time: 3 hours

Max. Marks: 60

PART - A

Answer ALL questions of the following

5x2M=10 M

- 1. Enumerate the methods of boring.
- 2. Write expression for Taylor stability number.
- 3. State the factors affecting location of footing.
- 4. Write converse Labarre formula and Seiler Keeney formula
- 5. What is meant by well steining and dredge hole?

PART-B

Answer any FIVE questions of the following

5x10 M = 50M

- 1. a) Describe the salient features of a subsoil investigation report and explain the importance of a boring log.
 - b) Explain the stability of retaining wall against overturning, sliding and bearing capacity.
- 2. a) Describe the procedure to conduct the plate load test with a sketch.
 - b) Explain types of sampler with neat diagram
- 3. Critically comment about the conditions that are to be carried out for stability analysis of earthen dam.
- 4. a) What are the modes of failure of slopes? Illustrate with sketches.

[4M]

b) Derive FOS for infinite slope of cohesionless soil.

[6M]

- 5. a) A loading test was conducted with a 300 mm square plate at depth of 1 m below the ground surface in pure clay deposit. The water table is located at a depth of 4 m below the ground level. Failure occurred at a load of 45 kN. What is the safe bearing capacity of a 1.5 m wide strip footing at 1.5 m depth in the same soil? Assume g= 18 kN/m³ above the water table and a factor of safety of 2.5. The water table does not affect the bearing capacity in both cases. For $\phi = 0^{\circ}$, Terzaghi's factors are Nc=5.7, Nq=1, and $N\gamma=0$ [6 M]

b) Explain types of foundations and factors to be considered in their location.

[4 M]

6. Explain in detail about the various types of pile foundations with neat sketch and mention their functions.

- 7. a) Explain different dynamic formulae to determine pile loading capacity
 - b) A group of 16 piles of 50 cm diameter is arranged with a centre to centre spacing of 1.0 m. The piles are 9 m long and are embedded in soft clay with cohesion 30 kN/m2. Bearing resistance may be neglected for the piles. Negative adhesion factor is 0.6. Determine the ultimate load capacity of the pile group.
- 8. a) Briefly explain the procedure adopted in well sinking and bring out the problems that are encountered in open sinking. [6 M]
 - b) Differentiate between Box caisson and open caissons.

[4 M]

MR15-(2015-16 Batch)

Code No.: 50136

MALLA REDDY ENGINEERING COLLEGE (AUTONOMOUS)

(Affiliated to JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD) Gundlapochampally (H), Maisammaguda (V), Medchal (M), Medchal-Malkajgiri (Dist), Hyderabad

IV B.TECH I SEMESTER SUPPLEMENTARY EXAMINATIONS, NOVEMBER-2019

Subject: PRESTRESSED CONCRETE STRUCTURES

Branch: CE

Time: 3 hours

Max. Marks: 60

PART - A

Answer ALL questions of the following

5x2M=10 M

- 1. What are the advantages of prestressed concrete?
- 2. List the codal provisions for the loss of stress due to relaxation of stress in steel.
- 3. Discuss the codal provisions for shear as per IS: 1343-2012.
- 4. Sketch the distribution of stresses in the anchorage zone.
- 5. What is the influence of differential shrinkage on composite prestressed concrete members?

PART-B

Answer any FIVE questions of the following

5x10 M = 50M

- 1. a) Differentiate between full pre stressing and partial pre stressing.
 - b) What are the assumptions made in PSC?
- 2. a) Write about magnel's system of prestressing with sketches.
 - b) What are the advantages of freyssinet system in PSC.
- 3. a) Discuss the measures to be adopted for counteracting elastic loss and friction loss in case of post tensioned member.
 - b) A beam of size 500mm x 1000mm is used on simply supported span of 10m. It is provided with a bent tendon having an eccentricity of 100mm at centre and an eccentricity of 50mm upwards at the ends. The dead load of the beam is 10kN/m. Compute the stresses at ends and at mid span.
- 4. a) How will you improve the shear resistance of structural concrete members by applying prestressing technique?
 - b) A rectangular concrete beam 250mm wide and 600mm deep is prestressed by means of 4 14mm diameter high tensile bars located 200mm from the soffit of the beam. If the effective stress in the wires is 700N/mm². What is the maximum bending moment that can be applied to the section with out causing tension at the soffit of the beam?
- 5. a) Discuss briefly the IS-1343 code provisions regarding transmission length
 - b) Write a note on end zone reinforcement in end block.
- 6. Sketch some typical cross section of a composite bridge decks with precast prestressed elements.
- 7. a) Distinguish clearly between short term and long term deflection of prestressed concrete beams. [4]

- b) A composite T-beam up of a per-tensioned rib 100 mm wide and 200 mm deep, and a cast in situ slab 400 mm wide and 40 mm thick having a modulus of elasticity of 28 kN/mm². If the differential shrinkage is 100 x10-6 units, determine the shrinkage stresses developed in the precast and cast in situ unit.
- 8. Write short notes on any two of the following
 - a) Draw the variation of stress in steel in bonded and unbounded beams
 - b) What are the ways of improving shear resistance of structural concrete member by prestressing techniques
 - c) What is the necessity of providing anchorage zone reinforcement?